Stomatal Closure, Basal Leaf Embolism, and Shedding Protect the Hydraulic Integrity of Grape Stems.

نویسندگان

  • Uri Hochberg
  • Carel W Windt
  • Alexandre Ponomarenko
  • Yong-Jiang Zhang
  • Jessica Gersony
  • Fulton E Rockwell
  • N Michele Holbrook
چکیده

The time scale of stomatal closure and xylem cavitation during plant dehydration, as well as the fate of embolized organs, are under debate, largely due to methodological limitations in the evaluation of embolism. While some argue that complete stomatal closure precedes the occurrence of embolism, others believe that the two are contemporaneous processes that are accompanied by daily xylem refilling. Here, we utilize an optical light transmission method to continuously monitor xylem cavitation in leaves of dehydrating grapevine (Vitis vinifera) in concert with stomatal conductance and stem and petiole hydraulic measurements. Magnetic resonance imaging was used to continuously monitor xylem cavitation and flow rates in the stem of an intact vine during 10 d of dehydration. The results showed that complete stomatal closure preceded the appearance of embolism in the leaves and the stem by several days. Basal leaves were more vulnerable to xylem embolism than apical leaves and, once embolized, were shed, thereby preventing further water loss and protecting the hydraulic integrity of younger leaves and the stem. As a result, embolism in the stem was minimal even when drought led to complete leaf shedding. These findings suggest that grapevine avoids xylem embolism rather than tolerates it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stomatal Closure, Basal Leaf Embolism, and Shedding Protect the Hydraulic Integrity of Grape Stems1[OPEN]

The time scale of stomatal closure and xylem cavitation during plant dehydration, as well as the fate of embolized organs, are under debate, largely due to methodological limitations in the evaluation of embolism. While some argue that complete stomatal closure precedes the occurrence of embolism, others believe that the two are contemporaneous processes that are accompanied by daily xylem refi...

متن کامل

Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species.

Adequate water transport is necessary to prevent stomatal closure and allow for photosynthesis. Dysfunction in the water transport pathway can result in stomatal closure, and can be deleterious to overall plant health and survival. Although much is known about small branch hydraulics, little is known about the coordination of leaf and stem hydraulic function. Additionally, the daily variations ...

متن کامل

Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna

Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation ...

متن کامل

Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine

Water saving under drought stress is assured by stomatal closure driven by active (ABA-mediated) and/or passive (hydraulic-mediated) mechanisms. There is currently no comprehensive model nor any general consensus about the actual contribution and relative importance of each of the above factors in modulating stomatal closure in planta. In the present study, we assessed the contribution of passi...

متن کامل

Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas)

The impact of water deficit on stomatal conductance (g(s)), petiole hydraulic conductance (K(petiole)), and vulnerability to cavitation (PLC, percentage loss of hydraulic conductivity) in leaf petioles has been observed on field-grown vines (Vitis vinifera L. cv. Chasselas). Petioles were highly vulnerable to cavitation, with a 50% loss of hydraulic conductivity at a stem xylem water potential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 174 2  شماره 

صفحات  -

تاریخ انتشار 2017